Editorialisation des données publiques
  • 👣LA DATAVISUALISATION PAS A PAS
  • 1️Définition, contexte et enjeux de la datavisualisation
    • 1️⃣Datavisualisation, infographie, tableau de bord...
    • 2️⃣Les enjeux de la datavisualisation pour les collectivités
    • 3️⃣Les trois composantes d'une dataviz réussie
    • 4️⃣La dataviz, une histoire ancienne
  • 2️Les grandes familles de dataviz
    • Une sélection de datavisualisations
    • 1️⃣Représenter une répartition, les parties d'un tout
      • Le camembert
      • Les variations autour du camembert
      • Les graphiques en barres
      • Le compartimentage
      • Graphique en bulles
      • Icônes / surfaces
    • 2️⃣Représenter une évolution dans le temps
      • Histogramme
      • Courbes et lignes
      • Répétition de graphiques
    • 3️⃣Représenter des relations entre les données
      • Diagramme de Sankey
      • Diagramme de Venn
      • Diagramme circulaire
      • Carte de chaleur
  • 3️Mettre en oeuvre son projet dataviz
    • 1️⃣Les 4 grandes étapes
    • 2️⃣Des outils pour préparer les données
    • 3️⃣Dataviz statique ou dynamique ?
    • 4️⃣Dataviz exploratoire ou explicative ?
    • 5️⃣Choisir des couleurs adaptées
      • Minimiser le nombre de couleurs
      • Des outils pour choisir les couleurs
    • 6️⃣Etre guidé dans le choix du type de dataviz
      • Dataviz catalogue
      • Dataviz project
      • From data to viz
  • 4️10 points de vigilance
    • 1️⃣Bien dimensionner son graphique
    • 2️⃣Une échelle régulière
    • 3️⃣Privilégier un axe des Y à zéro
    • 4️⃣Trier les données
    • 5️⃣Pas de donnée ou valeur à zéro ?
    • 6️⃣Fournir un contexte
    • 7️⃣Comparer ce qui est comparable
    • 8️⃣Ne pas confondre corrélation et causalité
    • 9️⃣Limite des représentations surfaciques
    • 🔟Contexte de diffusion et mobile
  • DOCUMENTATION OPENDATAFRANCE
    • Plaquette / Poster DViz
    • Galerie de datavisualisations inspirantes
    • Plateformes et outils de dataviz disponibles
      • Panorama des outils
      • Sélection d'outils
  • Autres ressources
    • Sites internet et Twitosphère
    • Quelques ouvrages en français
    • Présentations et webinaires
    • Guide UE : faire des dataviz de qualité
    • Cartographie
Propulsé par GitBook
Sur cette page
Exporter en PDF
  1. Mettre en oeuvre son projet dataviz

Les 4 grandes étapes

PrécédentCarte de chaleurSuivantDes outils pour préparer les données

Dernière mise à jour il y a 2 ans

1- Définir un objectif

On ne fait pas un graphique pour "faire joli" mais pour donner du sens aux données, les mettre au service d'une finalité. Une datavisualisation par définition n'est pas neutre : elle fait des choix dans ce qu'elle veut montrer.

Définir un objectif, c'est aussi définir une cible : à qui s'adresse-t-on ? à des agents qui connaissent le sujet ? à des élus qui ont un besoin d'être aidés dans la prise de décision ? à des citoyens à qui l'on veut expliquer un phénomène complexe ou que l'on veut inciter à modifier le comportement ?

La cible influence l'ensemble du projet : le choix et l'organisation des données, le mode de représentation, le message, l'esthétique...

2 - Sélectionner et préparer les données

Cette étape est potentiellement la plus longue mais même si les données sont "propres" car la datavisualisation va imposer un travail de préparation spécifique, lié au logiciel utilisé.

Il s'agit notamment d'opérer une sélection de données (éliminer certaines colonnes par exemple) en déterminant celles qui sont les plus pertinentes pour le message que l'on veut faire passer.

Il s'agit aussi de réaliser des regroupements, des classements, des transpositions (...) pour que les données puissent être correctement interprétées par l'outil de visualisation.

Cette étape doit aider à affiner le choix éditorial en "anglant" la dataviz sur un message clé.

3 - Trouver le mode de représentation le plus adapté

Il s'agit de trouver à ce stade le mode de représentation des données le plus adaptée.

Cette étape peut être alimentée par la recherche de datavisualisations inspirantes sur des thématiques similaires.

Elle peut aussi s'alimenter de la consultation de catalogues de datavisualisation ou de sites spécialisés dans la veille sur la datavisualisation

On citera la veille proposée par OpenDataSoft via son ou des sites comme

4 - Éditorialiser le rendu (forme, contexte)

Cette étape consiste à produire la datavisualisations à l'aide d'un logiciel ou d'une plateforme.

L'éditorialisation des données passe par le choix des couleurs, l'ajout de textes explicatifs ou d'informations contextuelles permettant de comprendre les données.

Cette étape doit intégrer les contraintes inhérentes au support de diffusion : papier, présentation, mobile...

3️
1️⃣
club des utilisateurs
https://informationisbeautiful.net/