Editorialisation des données publiques
  • 👣LA DATAVISUALISATION PAS A PAS
  • 1️Définition, contexte et enjeux de la datavisualisation
    • 1️⃣Datavisualisation, infographie, tableau de bord...
    • 2️⃣Les enjeux de la datavisualisation pour les collectivités
    • 3️⃣Les trois composantes d'une dataviz réussie
    • 4️⃣La dataviz, une histoire ancienne
  • 2️Les grandes familles de dataviz
    • Une sélection de datavisualisations
    • 1️⃣Représenter une répartition, les parties d'un tout
      • Le camembert
      • Les variations autour du camembert
      • Les graphiques en barres
      • Le compartimentage
      • Graphique en bulles
      • Icônes / surfaces
    • 2️⃣Représenter une évolution dans le temps
      • Histogramme
      • Courbes et lignes
      • Répétition de graphiques
    • 3️⃣Représenter des relations entre les données
      • Diagramme de Sankey
      • Diagramme de Venn
      • Diagramme circulaire
      • Carte de chaleur
  • 3️Mettre en oeuvre son projet dataviz
    • 1️⃣Les 4 grandes étapes
    • 2️⃣Des outils pour préparer les données
    • 3️⃣Dataviz statique ou dynamique ?
    • 4️⃣Dataviz exploratoire ou explicative ?
    • 5️⃣Choisir des couleurs adaptées
      • Minimiser le nombre de couleurs
      • Des outils pour choisir les couleurs
    • 6️⃣Etre guidé dans le choix du type de dataviz
      • Dataviz catalogue
      • Dataviz project
      • From data to viz
  • 4️10 points de vigilance
    • 1️⃣Bien dimensionner son graphique
    • 2️⃣Une échelle régulière
    • 3️⃣Privilégier un axe des Y à zéro
    • 4️⃣Trier les données
    • 5️⃣Pas de donnée ou valeur à zéro ?
    • 6️⃣Fournir un contexte
    • 7️⃣Comparer ce qui est comparable
    • 8️⃣Ne pas confondre corrélation et causalité
    • 9️⃣Limite des représentations surfaciques
    • 🔟Contexte de diffusion et mobile
  • DOCUMENTATION OPENDATAFRANCE
    • Plaquette / Poster DViz
    • Galerie de datavisualisations inspirantes
    • Plateformes et outils de dataviz disponibles
      • Panorama des outils
      • Sélection d'outils
  • Autres ressources
    • Sites internet et Twitosphère
    • Quelques ouvrages en français
    • Présentations et webinaires
    • Guide UE : faire des dataviz de qualité
    • Cartographie
Propulsé par GitBook
Sur cette page
Exporter en PDF
  1. 10 points de vigilance

Ne pas confondre corrélation et causalité

PrécédentComparer ce qui est comparableSuivantLimite des représentations surfaciques

Dernière mise à jour il y a 2 ans

La corrélation, où deux séries de données semblent liées et convergent dans le même sens ne signifie pas nécessairement qu'il y ait un lien de causalité, de cause à effet. La tentation du déterminisme et de la recherche d'une causes uniques dans l'explication de phénomènes est pourtant fortement ancrée, du café du commerce à la sphère politique... L'éventualité d'une causalité relève cependant d'une analyse du contexte, d'éléments explicatifs que les chiffres seuls ne peuvent pas suffire à démontrer.

Les corrélations absurdes ne manquent pas, l'équipe des Décodeurs du journal Le Monde a même créé absurdes sur le modèle du site américain .

4️
8️⃣
un générateur de corrélations
Spurious correlations
Exemple de corrélation absurde du . Une simple manipulation des échelles des axes a permis de l'établir.
générateur du Monde